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ABSTRACT: The simplest partition function, associated with homogeneous symmetric forms
S of degree r in n variables, is integral discriminant Jn‘T(S) = fe_s(xlv""“”") dzy...dxy,.
Actually, S-dependence remains the same if e in the integrand is substituted by arbitrary
function f(5), i.e. integral discriminant is a characteristic of the form S itself, and not of
the averaging procedure. The aim of the present paper is to calculate J,, in a number
of non-Gaussian cases. Using Ward identities — linear differential equations, satisfied
by integral discriminants — we calculate Jy3, Jo4, Jo5 and J3j3. In all these examples,
integral discriminant appears to be a generalized hypergeometric function. It depends
on several SL(n) invariants of S, with essential singularities controlled by the ordinary

algebraic discriminant of S.
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1 Introduction

Averaging with exponential weight

(6) = / b(z)e 5@ dz

is an important operation in statistical and quantum physics. Function S(z), which de-
termines the weight, is called action. The integration domain of z-variables is a linear
space, which is usually infinite dimensional in real physical applications: for example, a
space of paths in quantum mechanics or a space of field configurations in quantum field
theory. Infinite dimension of the space introduces additional complications: the integral
is not always well-defined. For this reason, it is important first to study such integrals in
finite dimension n. After this is done, one can take a n — oo limit.

However, even in finite dimension n, the averaging operation is not yet fully understood.
Most studied are Gaussian integrals: that is, when S is quadratic in x-variables. The
simplest Gaussian integral

(1) = /e_sifxixjd"x
is easily calculated and expressed through an invariant quantity — determinant — e.g. by
diagonalising S

—Siixixi gn —Mz2—..—Apx2 n 1 —z2—..—22 m 1
e”lﬂda::/ell ""dxzi/el ndtr o~
/ VAL A Vdet S

The integral which factors out is just an S-independent constant, which can be finite or

infinite depending on the contour of integration. Therefore, essential S-dependence of

—-1/2

this Gaussian integral is given by (det S) . Any other Gaussian integral — with non-

homogeneous quadratic S or non-trivial ¢ — is equally easy, because we have enough



freedom to transform quadratic .S to diagonal or any other desired form. The possibility
of diagonalisation greatly simplifies calculations with matrices (tensors with two indices).

Unfortunately, such methods do not work when S is cubic or higher degree. This can
be seen already from dimension counting. The number of independent coefficients Sy,
which is n(n + 1)(n +2)/6, exceeds the number n? — 1 of available SL(n) transformations,
so it is not generally possible to diagonalize a cubic action — the group SL(n) is too small.
That is why the integral

/e—Siij:ia:ja:kdnx
and its higher degree analogues

Jn|r = /e_s(xl’“"x")dnx, S(.%'l, . ,xn) = Si17---,irxi1 B (1.1)

despite simply-looking, still remain terra incognita. In [1, 2] integral J,,(S) was named
the integral discriminant of S, because in the simplest cases this integral is just a power of
algebraic discriminant Dn‘T(S). For example, there is an inspiring formula for 3-forms in
two variables

(3 2 2 3
J2\3 _ /6 (aa: +bxy+cry*+dy )dxdy

— (270%d® — b2¢® — 18abed + dac® + 4b%d) "¢ = (Dyy3) /"

which shows that Jo3 and Dy3 are, indeed, related. However, when one goes to higher n
and r, the relation gets more complicated: D,,|, defines only the singularities of .J,,,., while
non-singular behaviour is controlled by other algebraic invariants. Thus, theory of integral
discriminants is closely connected to invariant theory [3] and can be viewed as one of the
branches of non-linear algebra 2, 4]-[8].

It would be very interesting to find a closed formula for generic .J,|,, because it could
provide exciting new tools in QFT, statistics and other fields where non-Gaussian averag-
ing is used. In this paper, we make a step in this direction and find integral discriminants
explicitly for 3-forms, 4-forms and 5-forms in two variables, and for 3-forms in three vari-
ables. Our results indicate an intriguing connection between integral discriminants (1.1)
and special functions known as generalized hypergeometric functions [9].

2 Ward identities

When the action is non-quadratic, diagonalisation and similar linear-algebra tricks fail.
To handle non-Gaussian integrals, one needs essentially different methods. One of such
methods (actually originated in the context of quantum field theory) is to find a differential
equation, satisfied by the integral as a function of its parameters, see [10, 11] for typical
applications and references. If such differential equation exists, we call it Ward identity
(even if it is not directly induced by a change of integration variables).

Since Ward identities play the central role in present paper, let us give a pair of simple
examples to clarify this issue. An integral

F(a) :/ex2/2+amdx



satisfies a Ward identity

because

0 2 0 2
Y _ _ —z* /24ax _ —z*/24ax —
<a 3a> F(a) /(a x)e dx / <0x e > dx =0

In contrast with diagonalisation, this method is perfectly generalisable to non-Gaussian
integrals: say,

G(a) :/6x3/3+amdl_

(AT

32 o 2\ —23/3+azx _ 0 —23/3+azx _
<a—w>G(a)—/(a—x)e dw-/(a—xe )dx—O

In this way the problem of non-Gaussian integrals is reduced to another problem — of

satisfies a Ward identity

because

differential equations. This is a much easier problem, especially if differential equations are
linear. In the first case we have

aF(a) = EF(G) — F(a) =c- €a2/2
Oa
while in the second case
32

(ZG(Q) = W

G(a) = G(a)=c1- Ai(a)+c2- Bi(a)

where Ai and Bi are special functions — Airy functions of the first and second kind. Note
that, there is only one linear independent solution in the Gaussian case, while in the non-
Gaussian case there are two linear-independent solutions. This is because to correctly
define an integral, one still needs to specify an integration contour. Different integration
contours provide different solutions of the Ward identity.

This relationship between Ward identities and integration contours is quite important,
so let us add more details. As the simplest option, the contour of integration in the integral

F(a) :/6x2/2+amdx
C

can be chosen as C' = real axis. However, this choice is by no means unique. In fact, any
other contour C' which asymptotically tends to the lines Arg z = 0 and Arg z = 7/2, is
admissible. A contour C' is said to be admissible, if the integral over C' converges. A few
admissible contours are shown at figure 1. Note that, to ensure vanishing of the integral
of full derivative (and thus validity of Ward identities) we consider only closed contors —
the contours at figure 1. are closed on the Riemann sphere, if the infinitely remote point is



Figure 1. Two, out of infinitely many, admissible contours of integration for the integral
fe_””2/2+‘”dz.

taken into account. Since Ward identity in this case is a differential equation of first order,
all the contours give one and the same answer F'(a) = exp (a2 / 2) up to proportionality.
More interesting is the non-Gaussian integral

G(a) :/e:v3/3+amdx
C

Note that, the real axis is no longer an admissible contour, since exp ( — x3) grows to
infinity when x — —oo. In this case, admissible is any contour C' which asymptotically
tends to the lines Arg z = 0, Arg z = 27/3 and Arg z = 47/3. A few admissible contours
are shown at figure 2. Again, to ensure vanishing of the integral of full derivative, we
consider only closed contors. Since Ward identity is second order in this case, there are
two essentially different integration contours, say, C; and Cs. An integral over arbitrary
contour — the general solution of the Ward identity — is given by linear combination

_p3 _ 3 _ .3
/e v/3tar g, — o /e v/3tar gy 4 e /e o*[3taz g,
Cl C2

To summarize the above examples, Ward identity is the main differential equation which
governs all the contours at once. The choice of particular contour corresponds to the choice
of particular solution of the Ward identity. For this reason, Ward identities are especially
convenient to study of properties, which are invariant under change of integration contour.
Additional details can be found in [10].

3 Integral discriminants

Definition. In this paper we study a specific class of non-Gaussian integrals:
integral discriminants

Topr (S) = / e S @zn) oy day,



Figure 2. Three, out of infinitely many, admissible contours of integration for the integral
f€713/3+axdz'

associated with homogeneous symmetric r-forms S(z1, z2,...,x,). There are two different
notations for symmetric forms, which can be useful under different circumstances: ten-

sor notation
n

S(.%'l, [ T ,.’L‘n) = E Si17i27...7z‘r.%'il.%'i2 < Ty,

01,82,..y0r=1
and monomial notation

_ ai a2 a
S(x1,x9,...,2y) = E Saras..an®] TG . T

ai1+as—+...4+an=r
To distinguish between these notations, we denote coefficients by capital and small letters,
respectively. Note, that in tensor notation coefficients have r indices, while in monomial
notation they have n indices.

The choice of contour. Being non-Gaussian integrals, integral discriminants of course
depend on the choice of integration contour. One has to remember, that not every contour
is admissible: for given .S, only restricted set of contours is allowed. Say, for positive-
definite quadratic forms S admissible is any contour, which is asymptotically pure real (see
the previous section, especially figure 1 and figure 2 for simple examples). At the same time
for negative-definite quadratic forms admissible is any contour, which is asymptotically pure
imaginary. In this paper, we do not describe the contour dependence explicitly. Instead,
we concentrate on contour-independent properties of integral discriminants.

Independence on the form of action. An important feature of integral discriminants,
which is due to homogeneity of S, is the possibility to substitute the function e™° under



the integral with arbitrary function (or, better to say, arbitrary good function) f(.S):

/es(xl""’m") dxy ...dx, ~ /f(S(a:l, . ,xn)) dxy...dx, (3.1)

Even before specifying the class of good functions, let us consider a simple illustration

with f(S) = e 5"

/G(Sij:l?ill?j) Ay — /6(A11%+"'+)\n$%) I

_ (a:§+...+mi) I const

1
- \/7)\1...)%/6 Jdet S
2
/e(s’vifmimf)2 d"x = /e(Alm%Jr"'Jr)‘"m%) d"z

2 /
_(x§+___+$%) 'y — const

1
_v>\1...)\n/6 Vdet S

To specify the class of good functions and prove (3.1), let us make a change of integra-

tion variables
T1=p, Ty=pze, T3=pZ3, ...,Tp = PZn

i.e. pass from homogeneous coordinates x; to non-homogeneous coordinates
Z; = 1‘2‘/.%'1. Then

/e_s(“’”"“’x”) dry...dz, = /pn_ldp/dZQ...dzn e P S (122,02m)

dzo ...dz
_ n—1 —pTd . 2 n
(Jrer) [ oo

For the right hand side of (3.1) we have

/f(S(xl,xg,...,xn)> dxy ...dx, = /pn_ldp/dZQ...dzn f<prS(1,zg,...,zn))

= (forst)) [

Both integrals over p are just S-independent constants. As one can see, (3.1) is valid, iff

/p"‘le‘prdp and /p"‘1f<p”>dp

are finite over one and the same contour. This condition specifies the class of good func-
tions f(S). For example, all functions f(S) = exp ( — S*) for k > 0 fall into this class.
Relation (3.1) is therefore proved. As a byproduct, we have obtained a non-homogeneous

these integrals

integral representation

dZQ...dZn
. Ny 3.2
njr (§) = cons /5(1,22,...,,2”)"/7" >




A useful complement to the definiton of integral discriminants, representation (3.2) high-
lights two properties, which were less evident in (1.1): the scaling dimension

Tutr (AS) = A7 J1(S) (3.3)
and the vertical symmetry

Lnjir (S*) ~ T () (3.4)

Ward identities. We now turn to Ward identities, satisfied by integral discriminants
with respect to their parameters. Let us introduce the correlation functions

<¢($1,...,xn)> = /(b(xl,...,xn)e_s(“’”"“’x”) dxy...dx,

These correlation functions satisfy

0

88@17---7(171

<q§(x1, . ,xn)> = —<x‘1“ coxing(xy, ... ,xn)> (3.5)

and

0 0
85a1,...,an asbly---abn

<<;5(3:1, . ,xn)> = <x‘1“+b1 . :UfL"er"qb(xl, . ,xn)>

The right hand side depends only on the sum of indices a; 4+ b;, not on a; and b; sepa-
rately. For this reason, correlation functions satisfy a system of homogeneous second order

differential equations:

0 0 g 0 N
<386385_88ﬁ386> <(b(1'1,,f13n)>— 9 a+b_p+q (36)

In particular, if we set ¢(z1,...,2,) = 1 we find that integral discriminant <1> = Jnjr
satisfies Ward identities

(Ll 22
38& ({985 885 88,1*

> Jar(S) =0,  d@+b=p+q (3.7)

These equations do not exhaust the set of all Ward identities: there are more. Notice that
the differential operator in the left hand side of (3.7) annihilates not only the integral, but

also the integrand:

< 0.9 ii) ¢~ S(E1an) — ()
885 ({985 885 88,1*

Q
+
S

I
=y

+

<y

and even

<66 o 0

686855_asﬁa—sq‘>f(s(xla"'axn)>:0, a+b:p+q

which justifies (3.1) once again. Usually, Ward differential operators do not annihilate the
integrand, they just transform the integrand into a full derivative (which implies vanishing
of the integral over any closed contour). Differential operator in the left hand side of (3.7)



is therefore too special; one can expect other Ward identities to exist. To find them, let us
consider the most general vanishing correlator — an integral of full derivative

/68 <¢($1,...,xn)e*S(ml’“"“’m")) dry...dx, =0
Zi

Taking the derivative, we obtain Ward identities for correlation functions:

(B0su)) (g, Pt .

For now we are not interested in all correlation functions, only in the integral discriminant.
We need to rewrite the equations (3.8) as differential equations on J,|,. There are several
ways to do this, the simplest way is to set ¢(x1,...,2,) = x; and use the identity (3.5) to
get rid of remaining correlators. Doing so, we obtain equations

<5z‘j + a; Aij) Jnr =0 (3.9)
where operators
A 0
Aij - Z Sal...ai—l...aj-i-l...an _88 — (3.10)
ai1+az+...+an=r ai...an

form the GL(n) algrebra:
Ay Ay — A Aiy = Aydy; — Arjdy

Note also, that other choices of ¢(z1,...,2,) in (3.8) do not give new Ward identities:
everything, that can be obtained in this way, will be equivalent to (3.9). We conclude that
the complete set of Ward identities for J,, consists of equations (3.7) and (3.9).

SL(n) invariance. In solving these Ward identities we start from (3.9), because they are
first order. In fact, equations (3.9) simply reflect the GL(n)-covariance (= SL(n) invariance
+ correct scaling) of the model. This becomes clear, if we separate the generators of GL(n)
into two parts: the dilatation (degree) operator

A11+---+Ann

and the other m? — 1 operators, which form a representation of SL(n). The first
relation implies
(AH + ...+ Ann) Jn‘r = —% Jn|r

which is nothing but the scaling dimension (3.3). The other n? — 1 relations imply, that
Jnjr 18 SL(n)-invariant function of S. Thus, equations (3.9) are completely solved by any
SL(n)-invariant function of S, which is in addition homogeneous in S of degree —n/r. A
natural question is: is there any simple description of such functions? Actually, the answer
to this question is positive: any SL(n)-invariant function can be uniqely represented as a

function of the elementary invariants I

Jopr = F{I1.}



"\n[23 4 5 6 7
111 1 1 1
125 11 21 36
2 720 46 91 162

313 41 102 217 414
4 20 69 186 427 876

O T = W N

Table 1. The number of functionally independent SL(n) invariants Ij of a form of degree r in
n variables.

much in the same way as any SL(n)-invariant function of a matrix Aé» can be uniquely
represented as a function of elementary invariants trA*. Unfortunately, in the case of
symmetric tensors S;, . ;. classification of these elementary invariants Iy, is not that easy, as
in the case of matrices. Since a symmetric tensor with r indices is much more complicated,
than a matrix with two indices, no explicit formula like I, = trAF is available. The study
of properties of the elementary invariants Iy, of different kinds of explicit formulas and
relations between them, is a classical branch of science known as invariant theory [3].

The number of SL(n) invariants. Given parameters n and 7 of the form S, one can
easily find the number of elementary invariants Iy, of which all other invariants are various
functions. Indeed, the linear space of forms S of type n|r has dimension

(n+r—1)!

dim Sy = rl(n—1)!

that is the number of independent coefficients of symmetric tensor S;, . ;.. The group SL(n)
acts on this space, dividing it into orbits. All forms, connected by SL(n) transformations
Siy i 7 Siy i U;ll U;Z, U € SL(n) belong to one orbit. Ward identities imply, that
Jn|r does not depend on coordinates along the orbit ("angular” variables). It depends
only on transverse coordinates which label orbits ("radial” variables). Simple counting
of dimensions implies, that dimension of the space of orbits, i.e. the number of radial
coordinates, equals to

—1)!
dim S,,|,, — dim SL(n) = (ntr=DV 2y
rl(n—1)!
Several examples of these numbers are shown at table 1.
The gaussian case Jy3. Note, however, that the case r = 2 (quadratic forms) is
exceptional, because the dimension dim S, = n(n + 1)/2 is less than the dimension

dim SL(n) = n? — 1. For this reason, the above dimension counting does not work in
this (and only in this) case. Actually, as we know, the space of SL(n) orbits on quadratic
forms is one-dimensional, and the only invariant — the single coordinate on the space of

orbits — is determinant det S. Thus, determinant is the only variable .J,, o can depend on:

Tp2(S) = F(det S)



The homogeneity condition states, that F ()\x) = F (x)/ VA and has a single solution
F(z) =1/y/z. In this way we reproduce the well-known Gaussian integral

1
vdet S

We emphasize, that simplicity of this answer is due to simplicity of the space of orbits,

Juja(S) = (3.11)

i.e, due to the fact there is a single invariant in this case. For higher r, there are many
invariants (as many as shown at table 1) and J,,, is a non-trivial function of all of them.
The problem is that it becomes impossible to find J,, from the homogeneity condition
alone. The solution of this problem is provided by Ward identities: in addition to the
homogeneity condition, integral discriminant satisfies relations (3.7) and this allows to
find F {Ik}

Diagram technique for SL(n) invariants. To do actual computations with SL(n)
invariants, we will adopt a convenient diagram technique, which is described in [2]. Ac-
cording to [2], it is possible to represent tensors with k indices as k-valent vertices, with
two types of indices — covariant and contravariant — represented by two types of lines.
Contraction of indices is naturally represented as connection of these lines. To simplify
the diagrams, we use solid lines for both covariant and contravariant indices. In this paper
we use the following four elementary building blocks for diagrams: covariant tensor S;,. .,
represented by a black r-valent vert

S

r indices
contravariant tensor ———, repre<entaed hyv a hlaclk »_yalent vertex
0Si, i,
g

r indices

completely antisymmetric contravariant tensor €'n, represented by a white n-

/N

n indices

valent vertex

*
21...0n 7

and completely antisymmetric covariant tensor e represented by a white n-

valent vertex

£

€

7 indices

,10,



Figure 3. Determinant of matrix S;;, represented as a diagram of tensor contraction. Black
2-valent vertices represent tensor .S, white n-valent vertices represent tensor e.

*
i1...0n
their indices, and, therefore, remain invariant under SL(n) transformations:

Tensors €1 and € are completely antisymmetric with respect to permutations of

eIt Ut = det U - 19 = iedn
n

* i1 in __ Lk ok
6@'1...2‘nt1 ...an =detU €i1oin = E1on

where det U = 1, because U € SL(n). For this reason, any diagram without free (uncon-
tracted) indices, made of contravariant e-vertices and covariant S-vertices, is automatically
SL(n)-invariant function of S. Say, determinant of n x n matrix S;; can be represented as
a diagram at figure 3, with n S-vertices and two e-vertices. The other two types of vertices
(0/0S and €*) will be used to construct SL(n)-invariant differential operators.

Diagrams provide a convenient way to obtain SL(n) invariants. In fact, any SL(n)-
invariant can be obtained in this way, but, unfortunately, not uniquely: absolutely different-
looking diagrams can represent one and the same invariant. Trying to resolve this ambigu-
ity, one typically faces the complicated problems of classification of diagrams and finding
relations between diagrams. These problems will not be adressed (and even touched)
in present paper. Our goal is different: to find an explicit answer for J,, in several
non-Gaussian cases, using diagrams as a convenient tool. We now turn to accomplishing
this goal.

3.1 The case of Jy3

The simplest non-trivial (i.e. non-Gaussian) example is a 3-form in 2 variables, which can
be written as
S(x,y) = S112” + 3511227y + 3S 1220y + Sazoy”

By dimension counting, there is only one elementary invariant I, in this case, given by
a diagram at figure 4. The subscript ”4” stands for the degree of this invariant. In this
paper we find it convenient to denote the elementary invariants of degree k as [Ij. It is
straightforward to write the algebraic expression for the diagram:

171 oo kil kolo iak ial
I4 — SilizigSj1j2jgsk‘1k‘2k53slllgl3621]16Z2j26 1 1E 2 2613 36]3 3

— 11 —



Figure 4. The degree 4 invariant I of a 3-form in 2 variables, represented as a diagram of tensor
contraction. Black 3-valent vertices represent tensor .S, white 2-valent vertices represent tensor e.

Evaluating this sum, one gets the following explicit formula for I,
Iy = 257115555 — 125111511251225922 + 851115795 + 857125220 — 657155720
which is nothing but the algebraic discriminant Dy3 of S:
Dy3 =14 (3.12)

Since there is only one elementary invariant, the integral discriminant Jpz must be a
function of Dy)3:

Ta13(S) = F (1)
Thus, this case is similar to the Gaussian case. The homogeneity condition states, that

F(\z) = F(x)/% and has a single solution F(z) = 1/¢z. In this way we reproduce the
formula from the Introduction:

-1/6
Joys () =1,V (3.13)
In this case, one does not need to use the Ward identities (3.7): it is enough to use the
homogeneity condition.
3.2 The case of Jo

The next-to-simplest example is a 4-form in 2 variables, which can be written as
S(z,y) = Suna’ + 4511122y + 65112027y + 4S12002Y° + Saz20y”

Invariants. By dimension counting, there are two elementary invariants in this case.
They have relatively low degrees 2 and 3, denoted as I and I3 and given by diagrams at
figure 5 and figure 6, respectively. Looking at the diagrams, it is straightforward to write
algebraic expressions for Io, I3:

I, = Si1i2i3i4Sj1j2j3j4€iljl6i2j26i3j36i4j4

I3 = Sy iyisis Sj1j2j3j4 S kokky €171 €202 etk giaka jaks jaka

- 12 —



O

Figure 5. The degree 2 invariant Is of a 4-form in 2 variables, represented as a diagram of tensor
contraction. Black 4-valent vertices represent tensor S, white 2-valent vertices represent tensor e.

C’W@
'S )]
o
8

Figure 6. The degree 3 invariant I3 of a 4-form in 2 variables, represented as a diagram of tensor
contraction. Black 4-valent vertices represent tensor .S, white 2-valent vertices represent tensor e.

Evaluating these sums, one gets the following explicit formulas for I, I3:

Ir = 28111152222 — 85111251222 + 65712
I3 = 6511151225222 — 65111157990 — 65711252222 + 125111251192 S1220 — 657129

,13,



The algebraic discriminant Doy, just like any other SL(2)-invariant function of S, is a
function of I, I3:

Doy = I3 — 613 = 857,11 53999 — 9657111 S111251222 55999
— 14457111 5712253002 + 43257111 5112257292 52222
— 21657111 Sia22 + 432511115711251122 55022
— 4851111.571125T22252222 — 144051111 5111257199 51222 52222
+ 64851111 5712952292 + 86451111 5111251122 55999
+ 864571 1951122.51222. 52222 + 2885711557199 5 1292
— 43251111 5719557222 — 216571125555
— 512571121990 — 4325711257190 S2222 (3.14)

Integral discriminant. Similarly, the integral discriminant is a function of Is, I3:
Jou = F (I, I)

where the function F' is to be determined. The homogeneity condition does not allow to
find F' unambigously, it constrains only the overall scaling factor, but not the non-trivial
dependence on the ratio of invariants:

—1/4 Ig
F(l,I)=1,"" @ (F) (3.15)
2

Ward identities. To find the function G(z) in this ansatz, we need to use the Ward
identities (3.7). Applied to the present case of n = 2,r = 4, the system (3.7) takes

the form o e
— Jojg =0
((38408522 85318531 ) 2‘4

0? 0?
((38408513 B 85318522> J2‘4 =0

0? 0?
((38408504 - 85318513) J2‘4 =0

0? 0?
(88223822 B 38313813) J2‘4 =0

where s-parameters and S-parameters are related by

540 = S1111, 831 = 451112, S22 = 651122, S13 = 451222, S04 = 52222

Particular equations in this system are, of course, not SL(2) invariant. This is not conve-
nient, since we are interested in SL(2)-invariant solutions. Let us transform Ward identities
into invariant form, using (3.15).
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Invariant form of Ward identities. Substituting the invariant anzatz (3.15) into the
system, we obtain

0?2 0?2
- o4
05400522 05310831

5112252222 — Staos 2 *G(2) 9G(2)
= 41_29/4 | (14427 — 242) 5.2 T (2162 — 12) 5, T 5G(2)
0? 0?
- Jo|4
05400513 05310522
5122251122 — S111252222 2 &*G(z) IG(2)
_ i - ((1442 — 242) 50 + (2162 — 12) 2 +5G()
62 62
- Jo)4
05400804 05310513
. 35111251222 — 35%122 2 82G(Z) aG(Z)
- 4129/4 < (14427 — 24z) 5.2 + (2162 — 12) P +5G(z)
0? 0?
- Jo4
05920592 05310513
~ S111152222 — S111251922 2 8*G(z) IG(2)
_ o - ((1442 — 242) 557 + (2162 — 12) S +5G()

where z = I2/I3. These equations contain a common SL(2) invariant factor. We conclude,
that all the four expressions vanish, if and only if G(z) satisfies the differential equation

9G(2)

z

2
(14422 — 242) aG(Z) + (2162 — 12)

5 +5G(2) =0 (3.16)

which is nothing but Gauss hypergeometric equation

0?G(t) OG(t)
with a = 1/12, b = 5/12, ¢ = 1/2 and t = 6z. This is the invariant form of n = 2,r =4
Ward identities.

tH1—t)

Solution. In terms of the Gauss hypergeometric function

“T(a+k)T(b+k) T(c) t* ab, a(a+1)b(b+ 1) 2
2P ([, 8], [d,1) :Z I'(a)  T'(b) F(c—l—k)H:l—i_?t—i_ cle+1) 2

k=0

the general solution of Gauss hypergeometric equation is given by
G(t) = -2F1([a,b],[c] ,t) + ey -t 2F1([G+ l—c,b+1—¢,[2—] ,t)

Consequently, the integral discriminant equals

14 1 57 [1] 62 _7/a 7 117 [3] 6I3
() =ert k([ 5) - [o] 5 ) e [15-53) [3]

(3.17)
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where ¢ 2 are the two constants, parametrising the general solution of Ward identities.

1) fen  —1/4 1 57 [1] 62
e =5 (55 [5] 5

(2) —7/4 7 11 3 6[§
and J2‘4(S) = I31, 2F1<[E’E 13 71—5,

Particular solutions

are associated with different integration contours and can be called the first and the second
branches of Jy4.

Singularities. Notice, that the point ¢ = 1 corresponds to
E

which is just the discriminant’s vanishing locus I3 — 612 = Dy = 0. This is interesting,

because the point ¢ = 1 is a singular point of the hypergeometric function oF}. However,

there are two other suspicious points: hypergeometric function 5 F; can have singularities

at t = 0,1 and co. Let us study asymptotics of integral discriminants at these points, using

the formulas

oF1 ([a,b],[c],t) =1+ O(1), when ¢t — 0 (3.18)
2F1([a,b],[a+b],1—t):—%logt—i—O(to), when t — 0 (3.19)
211 ([a, b, [c],t) :t_a% oF ([a,a —c+1],[a —b+1],1/t) +
(e —b)I(c)
+t bw oF) ([b,b—c+1],[b—a+1],1/t)

(3.20)

which can be found in any reference book of hypergeometric functions (see, e.g. [12]).
Using (3.18), we find

I (S) ~ I, o), when ¢ — 0
J2(|2z2 (S) ~ 1312_7/4 + O(t)7 when t — 0
Using (3.19), we find
(1) —(1/2) _ 613 0
ey . —T(/2) 7/ 63 0
J2|4 (S) T(7/12)T(11/12) I3I, " log i + O(t ), when ¢t — 1
Using (3.18) and (3.20), we find
(1) ~ F(1/2)F(1/3) —1/12 -1/6 —5/12
(2) ~ F(1/3)F(3/2) —7/127-1/6 —11/12
Jl4 (5) [(11/12)2 (—6) I3+ O(t ) when t — oo
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We can see from these results, that singularities of the integral discriminant Jo4 at finite
values of Iy, I3 are completely controlled by the algebraic discriminant Dy|4. The singular-
ity at discriminant locus is logarithmic. Other singularities, not related to the algebraic
discriminant, are situated at infinite values of invariants: Iy — oo (t — 0) and I3 — o0
(t — o00).

Hypergeometric integral. Function o/ has an integral representation

! _ c b—1
oF ([ab],[d], 1) = / ds’ 1 - St) (3.21)
0

which is a direct consequence of a simpler identity

1
= /ds sH1 —5)b 7t (3.22)
0
For the integral discriminant, we obtain

1 1
§T12(] — g)=11/12 s112(1 — 5)=5/12
J2|4 =cp- /ds + cols - /ds (3.23)
0 0

13 —68[2)1/12 13—6812)7/12

Hypergeometric functions with different values of parameters a,b and c are related by
various "modular” transformations of the variable ¢ and the integration variable s, which
leave the boundary region (two points 0 and 1) intact. Such transformations were first found
and studied by Euler, therefore they are known as Euler hypergeometric transformations.

Say, transformation ¢ — ¢, s +— 1 — s gives rise to a relation

t—1

oFy ([a,0],[c],t) = (1 —t)"* 2 F} <[a, c—1b],[d], —> (3.24)

After this transformation, Jy4 takes form

1 -1/12 1 1 1 61
T3 (S) = (Do) 2F1<[EE]H D234>
2 ~7/12 T T 3 61
T3 (8) = Is (Dap) 2F1<[EE]H D234>

In this way the hypergeometric integral (3.23) allows to recast Jo4 in various forms and
establish relations between them. Therefore, (3.23) is a useful and important represen-
tation. We emphasise, that the relation of integral [ e 5@V drdy to hypergeometric in-
tegrals (3.23) is not a priori expected: these integrals look very different, even from the

point of view of variables they depend on.

,17,



Vertical symmetry. To finish this section, let us check the vertical symmetry between
JQ‘Q and J2‘4I

Joj4 ((aazQ + bxy + cy2)2> ~ Joj (cm:2 + by + cy2>

Setting S(x,y) = (az? + bzy + cy?)? we obtain the coefficients

1 1 1
Si111 = a?, S = 5605, St122 = §GC+ 652, S1220 = §bC, So909 = 2

and the invariants

1 1
I, = E(bZ —4ac)?, I3 = %(b2 — 4ac)?
Substituting them into (3.17), we find
(1
M A
Jya () = ———=
2‘4( ) b2 _ 4(16
A®2)
J@

o (8) = N

where the constants of proportionality

- 1 5] [1 _ I'(1/2)
(1) — g1/ L I Y B ! ~
AT =672y ([12’ 12} ’ [2] ’1> O ) 80~ e

7 11] [3 I'(3/2)
AQ) —gtl/4 . || = = 2l 1) ~ —gtl/4 1 ~
RN ([12’ 12} ’ [2] ’ ) O e ai2) 80~

are independent of a,b,c — as prescribed by the vertical symmetry — but infinite. Only
their linear combination

T(3/2) B I(1/2) e _
<6+1/4F(7/12)F(11/12)> AN _ (6 1/4F(1/12)F(5/12)> A® = finite number = —5

is finite — logarithmic divergencies cancel out. Actually, it is expectable that only one
linear combination of solutions stays finite. This is because not every contour, admissible
for Jpy, is admissible for J;5. Admissible contours for .J, 4 approach infinity from 4 different
directions, where the 4-form (az? + bxy + cy?)? takes real positive values. Only two of these
directions are appropriate for Jo; — those, where the 2-form ax?® + bry + cy?® takes real
positive values. One linear combination of branches corresponds to admissible contours,
while the orthogonal linear combination corresponds to other contours. That is why both
branches are singular at ¢ — 1, but certain linear combination of branches is regular at
t = 1. Note, that nothing similar happens at non-discriminantal singularities: at t — 0
and ¢ — oo no linear combination of branches stays regular.

3.3 The case of Jy;

Our third example is a 5-form in 2 variables, which can be written as

S(x,y) = S111112° + 5S111122 Y + 10S111222°y* 4 10811200729 + 5S1209070y* + S20920%°
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Figure 7. The degree 4 invariant I of a 5-form in 2 variables, represented as a diagram of tensor
contraction. Black 5-valent vertices represent tensor S, white 2-valent vertices represent tensor e.

Invariants. By dimension counting, there are three elementary invariants in this case.
They have degrees 4, 8 and 12, denoted as 14, Is and I3 and given by diagrams at figure 7,
figure 8 and figure 9. Looking at the diagrams, it is straightforward to write an expression
for Iy

171 (272 (1373 €Z4k4 625/% 6]414 6j5l5 6/€1l1 6k2l2 6k?,l?,

and equally straightforward to write expressions for Ig, I1o. Evaluating the contraction,

one gets a formula

Iy =25%1111 552992 — 2011111511112 512222522992 + 8511111511122, 511222 522292
+ 3251111151122 9999 — 24811111 571999512202 + 3257112511222 522920
+ 1851112579992 — 24511112571 192522202 — 152511112.511122.511222.512222

+ 9651111257 1999 + 9655119912222 — 6457119957199

and similar formulas for Ig, I;2 — they are quite lengthy and we do not present them here.
The algebraic discriminant Dyjs, just like any other SL(2)-invariant function of S, is a
function of 147 Ig, 112:

Dyj5 = I — 6413 (3.25)

Integral discriminant. Similarly, the integral discriminant is a function of Iy, Is, I15:

Jojs = F(I4, Is, I12)
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Figure 8. The degree 8 invariant Ig of a 5-form in 2 variables, represented as a diagram of tensor
contraction. Black 5-valent vertices represent tensor S, white 2-valent vertices represent tensor e.

where the function F' is to be determined. The homogeneity condition does not allow to
find ' unambigously, it constrains only the overall scaling factor, but not the non-trivial

dependence on the ratios of invariants:

_ Is I
F(ly,Is, L) = I, /" @ (I—i %) (3.26)
4 4

To find the function G(u,v) in this ansatz, we need to use the Ward identities (3.7).

Ward identities. Applied to the present case of n = 2, = 5, the system (3.7) takes

the form
62 62 82 82
<83506332 B 33418341> Jas =0 <03328832 - 8841(%’23) Fapp =0
62 62 82 82
<83506323 B 33418332> Jais =0 <83508305 - 88323823> Fopp =0
62 62 82 82
<38503814 - 33418323> T2ps =0 <03418814 a 8832&923) T2 =0

where s-parameters and S-parameters are related by

550 = S11111, S41 = 5S11112, 832 = 10511122, S23 = 10571222, S14 = 5512222, So5 = 522222

Particular equations in this system are, of course, not SL(2) invariant.
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Figure 9. The degree 12 invariant I12 of a 5-form in 2 variables, represented as a diagram of tensor
contraction. Black 5-valent vertices represent tensor S, white 2-valent vertices represent tensor e.

Invariant form of the Ward identities. It is possible to deal with non-invariant
equations (as we did in the previous section) but it is much more convenient to rewrite the
above differential equations in SL(2)-invariant form, by summing them with appropriate
S-dependent coefficients:

OO :(2511111512222 - 8511112511222 + 65%1122)X

e o 0 _g o 0 46 o 0
0s50 0514 0541 0523 0532 0532
+ 2(S11111522222 — 3511112512222 + 2511122 511222) X

(o0 0 2 0 B
0s05 0s50 0541 0s1a 0s3za 0523
+ (2811112522202 — 8511122512222 + 6571999 ) X

><28 8_83 8+63 0
0s41 0505 0532 0514 0523 0523
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Figure 10. Invariant differential operator Oy for the case 2|5, represented as a diagram of tensor
contraction. Black 5-valent circles represent tensor .S, white 2-valent circles represent tensor €, black
5-valent rhombuses represent tensor 9/9.S, white 2-valent rhombuses represent tensor e..

and

04:1311(5)(26 0 9 0 .0 a>

8550 8814 8841 8523 8832 8532

o 0 o 0 o 0
2P (S -3
" 12( ) <8805 a550 0541 0514 8832 6823>
g 0 o 0 g 0
P 2 _
+ Pa(5) ( 0s41 0505 0832 0514 * 0503 8323)

where P is a quadratic form with coefficients

272 (373 6l4/€4 €Z5k5 eklll €k212 eJama Jjsms ;mis1 mas: 6138361484 It k3 €l5m3

Operators Op and Oy are SL(2)-invariant, simply because they are given by diagrams at
figure 10 and figure 11. The subscripts ”0” and ”4” stand for the degrees of these operators.
In analogy with invariants I, we denote the invariant differential operators of degree k
as Ok

Of course, operators Op and Oy are not unique — there are many other invariant dif-
ferential operators, which annihilate J;5. All such operators contain an e-antisymmetrized
combination of two derivatives 9/0.S, which is exactly the structure of Ward identities. We
do not study here the interesting problems of classification of these operators and finding
relations between them, because Oy and Oy are quite enough to find Jy5. Let us derive a
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Figure 11. Invariant differential operator O, for the case 2|5, represented as a diagram of tensor
contraction. Black 5-valent circles represent tensor .S, white 2-valent circles represent tensor €, black
5-valent rhombuses represent tensor 9/95, white 2-valent rhombuses represent tensor e,.

useful formula for the action of second order operators
A o 0
0= CoBmr =
O% P05, 055
By application of the chain rule, we obtain
A OF %I, O*F oIy, 01,
OF{I;} = — Cope—r— — Cop=———
i} Zk: o1, azﬁ: 3952055 kZ 91,01, C%; #95. 055

Since I, )
; caﬂm = OI,
and oI, L, - . .
% QCME(?—SB = O(I4Iy) — IxO1,, — 1,01

we finally obtain an important formula:

. OF . 1 . . .
OF{L} =" 1.0l + 3 T [O(kam) — 1Ol — ImOIk] (3.27)
k k

As one can see, to describe the action of O—operators on arbitrary invariant functions it
suffices to calculate the action on all invariants I and all products Ii1l,,. In the present

,23,



case we have

264
— 1
14 25 *
A 2 294
o 8 % 17 + %5 Is
12 12 162
— 141 —17
o5 14 s + 5 12
I3 Il Ll
Oo | LIs I} Ishs | =
14112 18112 1122
928 384 1166 192 12 , 144 1794
I4 — IS 2514 5% 14l + 5 Ii2 Iils + %5 I3+ 14112
1166 192 8 1188 12 9 1944
= —I 141, —1T —I?I J R — S VL —II IsI
254+ %5 48+512 2548+ 25 g+5412 548+25412+ g fslz
12 144 1794 9 1944 54 84 684
21 Sy 14T 1412 21 IsT Iy I4IsT I3
2548+258+ 54122548+5412+ 5812 258+54812+512
and similarly for the second operator
264
_
L 25 °
A 2 588
O I = | ——141 [
4 8 o5 14 s+ ——
T2 363 153
el - iy Y |
50 5 25 V7
I} Ids Iilh
04 I41g 182 Is1i2 -
14[12 18[12 1122
928 768 584 524 363 2 153 696
———Iyls———1 —I Ts——I2+="1,0 — 141, I I IsI
o5 Lals— 5= e 118 258+ ahe - lals - ahe——=Ish:
584 524 2376 603 291 1188
= ,_[ Is—=—I2+4+=21,0 —I 12 —I I Is1 - LT I
g5 4l T o5 st gy el oplds moglifet o lshy s T o fads et o
363 153 696 603 291 1188 129 606
by Y ¢y ol Islis — I3 — == I,IsI 17 iy Y K
50 M8 T gyt o sl Els o lals ot e i 5 82T g 2
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Applying (3.27), we obtain

A 264 = OF 2 5 294 or 12 162 or
OoF (I, Is, Iha) =—— 148[4 + (25.7 + I) oL + <25I4I8 112> 0lis

192\ 0°F 6 O*F
+ (8[} 18> o + (25 I2Ig + 1212 + 514112> o

6 O*F 608 192 O*F
Ig + I4I8II2 + 36112> — + <—I418 + ?112> A

* ( o1z, "\ 35 91,015
144 O*F
< 14—712> —

+

0140119

_l’_

3 168 0’F
4fg+ 14112+ 5 18112>

8186112

and similarly for the second operator

A 264 oF 588 oF 363 153 oF
O4F (I4,Is, 1) = 18 ( 251418 I12> + ( I — 14112>

ol 25 ol 50 25 ol
. <—8I418 B 384[12> (?92]1; (110]4]8 2514112 + 24]8112> (?;Tg
N (12451 1215 — 6[4[122> gj—g + (—% g - 2514[12> %5}8
43 o5 sl 8226]12 (25418 13561418]12 * 24]122) %

For the integral discriminant, both expressions vanish. Substituting the ansatz (3.26) and
making the necessary algebraic transformations, we obtain two differential equations on
the function G(u,v): the first

50(—1 + 64u) (u + 6u + 150) 2.
— u)(u u v
ou?
2 2 2 3 32G
+ (75u” + 720000% + 57600vu” + 600vu + 7200u” — 2500) = —
uov
82
+ (675u> — 1350002 + 10800vu* — 750vu + 43200uv2)W
v
) oG
+ (504000 + 30720u” — 50 + 5770u)
u
oG
+ (—300u + 60480vu + 11160u> — 76500) 5~ + (528u + 110)G = 0
(Y
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and the second

2
25(—1 4 64u)(5u® + 48uv — 221))‘27(;

62
+ (230400uv? — 3960002 — 6000u> + 28800vu® + 6800vu) 507
uov
3 2 2 2 82G
+ (1728000° + 75000° + 25200u0” — T0500u%) 5

oG
+ (~361200 + 4000u” + 122880vu + 100u) =
u

oG
+ (24192002 + 19440vu—9075u> + 76501))6— +(—220u+21120)G(u,v) = 0
v

where u = Ig/I and v = I12/I3. These two linear differential equations in two variables
constitute the invariant form of n = 2, = 5 Ward identities. Integral discriminant is found
as the solution of this system.

Solution. Having linear differential equations, it is easy to solve them in series: if one puts

G(u,v) = Z ciju'v?

i3
then one finds, after some algebraic transformations,
r 3+'+'F 1+2'+3‘F 1+‘
1 e S\ )\ T ) P o T
cij:const-w-m — - 2 3
J F<3+i+2j>r<g+i+2j>

3
i.e. there is unique series solution. In this way one obtains the first branch of the integral

discriminant Jy5:

3 1 1
T (it ) T (—=+2i43 ) T (—=+j - »
S0 gy — /10 (10““) <10+ " =7> (10“) 1 (161" (128112
2\5( )_ 4 Z 2 3 Z'_j' 72 373
i r <3+i+2j> r <3+z‘+2j> 4 4
(3.28)

This answer is interesting: the function appears to be of generalised hypergeometric
type [9], since its coefficients ¢;; are ratios of I'-functions, depending on linear combi-
nations of indices ¢ and j. However, these series have a rather small convergence radius.
Already the subsequence with i = j behaves as

3 1 1
' —=+2| 0| —=4+5|T(—=+47 ; ;
(10 + J> (10 + ]) (10 +J> ol \J 1 /91855 \J
Z 2 3 NZ_ 37 W

j F<3+3j>1“<3+3j> j

j2
and diverges when the combination in the last brackets exceeds unity. For analytical

continuation, one better substitutes this series by its integral representation.
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Hypergeometric integral. Applying the formula (3.22) twice, we get

3 L 1 ) ) 1 )
2 3
- 7/10 9/10 2\ ¢ 3\ J
_ //dtdst (s —ts)~ ts t(1—t)s
(1 > v1—3s 1—s 1—s
r 0 0

g

The sum over ¢ and j is calculated, using

3 1 A'BI 1
1 ') VItA+B
i,jI‘<§—i—j>Z j 1+A+B

and we obtain the following integral representation:

- ~7/104-9/10(1 ~9/10
/ / dtds - il Gt ) (3.29)
0 0

V3 — 3s + 48uts? + 128vs3t — 128vs3t2
Accordingly, for Jy5 we have

$7/105=9/10(1 __ 4)=9/10

1 7/5
J —1 / / dtds -
215 * /) V/3I3 = 3135 + 481, Ists? + 12811555t — 128115512

(3.30)

Other branches of Jy5 can be obtained by various transformations of variables (u,v) and
integration variables (¢, s), which leave the boundary region intact ("modular” transforma-
tions). We do not list them in this paper.

Singularities. One of the benefits of integral representation is the possibility to analyse
the singularities. Singularities of the integral (3.29) come from zeroes of the polynomial

P(s,t) = 3 — 3s + 48uts® 4+ 128vs°t — 128vs3t>

which stands in the denominator. Ordinary zeroes (say, in t) are inessential, already
because the singularity dt/\/t —to is integrable, and — more important — because the
integration contour can be deformed and taken away from the singularity. This can not be
done if the two roots coincide, i.e. if discriminant of P(t) is vanishing. Then what matters
is integration over s. If

Discy(P(s,t)) ~ (t1(s) — t2(3))2

has a simple zero at s = sg, then

P(s,t) ~ (t —t)? + (t1 —t2)® ~ (t —tg)* + (s — 50)
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Figure 12. The degree 4 invariant I of a 3-form in 3 variables, represented as a diagram of tensor
contraction. Black 3-valent vertices represent tensor S, white 3-valent vertices represent tensor e.

and the integration contour for s can be taken away from the singularity. More serious is
the case when discriminant has double zero, i.e. when repeated discriminant vanishes,

Discs< Disct(P(s,t))> =0

Then contour can not be deformed, neither in ¢ nor in s. However, in the vicinity of
such point
P(s,t) ~ (t —to)? + (s — 50)?

and this singularity, though unavoidable, is integrable because of the square root and
because the integral is two-dimensional. This is most simply expressed in polar coordinates:

dsdt
V(t —10)2 + (s — 50)?

Moreover, even if repeated discriminant has zeroes of higher order, P(s,t) ~ (t —t9)? +

~ drde

(s — s0)", the singularity in the integral does not arise.

Thus the only remaining source of singularity is when it occurs at the ends of inte-
gration segments (at the boundary of integration domain — because the contour can not
be deformed to avoid these boundaries), i.e. when s or ¢ equals 0 or 1. Given the shape
of P(s,t), of these the only significant one is at t = 1, when P(s,1) = 3 — 3s + 48us?.
Remaining integral over s becomes singular when this expression has a double zero:

Disc, (3 — 354 48u52> —1—6du=0

i.e. when u = 1/64. This point corresponds to

6415

=%
I3
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Figure 13. The degree 6 invariant I of a 3-form in 3 variables, represented as a diagram of tensor
contraction. Black 3-valent vertices represent tensor S, white 3-valent vertices represent tensor e.

which is just the discriminant’s vanishing locus I? — 6413 = Dy5 = 0. We encounter once
again the same relation between integral and algebraic discriminants: the latter controls
essential singularities of the former. Note, that the double zero occurs at the point s = 2,

which lies beyond the integration domain. For this reason, the singularity is rather soft.

3.4 The case of J33

Our final example is a 3-form in 3 variables, which can be written as

S(z,y) = S1112° + 381122y + 3S1132%2 + S202y° + 3S120wy”
—1—352233/22' + 533323 + 351331‘22 + 352332]22 + 651231‘2}2
Invariants. By dimension counting, there are two elementary invariants in this case.
They have degrees 4 and 6, denoted as I4, I and given by diagrams at figure 12, figure 13.

Looking at the diagrams, it is straightforward to write the algebraic expressions for Iy
and Ig:
i1j1k1 i2j2l2 i3ksls likaj
Lo = SiyigigSjnjajs Skikaka Shilpl€ /1 €222 1T
i1k1ly 2] j1k l k i3 131
IG — SiligigSj1j2jgsk1k2k3Slll2l35m1m2m35513233621 1 1€Z2]282€]1 2m1€ 2Mm2 36m383]3€ 31351
Evaluating these sums, one gets the following explicit formulas for Iy, Ig:

L4 = 65153 — 1251925793 5133+ 65725133 + 651135123 5133 5222 — 1251135793 5223
— 6511351225133 5223 + 1851135122 51235233 — 65113 5799 5333 + 65713553
— 6571352225233 — 651125733 5222 + 1851125123133 9223 — 1251257935233
—65112512251335233 + 6511251225123 5333 — 6511251135223 5233 + 651125113 52225333
+6.57195553— 6571252239333 — 65111 5133 305 + 65111 5133 5222 S233
+65111 512352235233 — 651115123 52229333 — 65111 5122 335 + 65111 51225223 S333
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Is = 4859, — 1445195 519351334 1445795 193 STas — 485300 5505 +725113.575.5133.5202
— 14481135755 5923 — 7251135122 512333 5292 + 7251135122575 5133 S203
+21651135122. 57935233+ 7251135722533 5223 — 2165113 5799 512351335233
—728113572257235333 + 7251135725133 5333 + 185713 5133 5922
—725%,3512351335292 S993+ 14457, 357535505 — 72571 3,573 5992 5933
+72571551225133 5505 — 3657351225133 52225933 — 21657, 3. 512251235223 S233
+144.5%,3519251235222 5333+ 16257, 35795 5555 — 144,57, 35755 59235333
— 485338505+ 72571 3.5999.5993 5933 — 24571 35599 5333 — 7251125735733 S22
+21651125735133 5223 — 14451125193 S233 + 725112512257 33 202
—21651125122.51235 1335223 + 7251125122 57935133 5233 + 7251125122 5723 5333
+ 7251125729 51335233 — 7251125799 5123 5133 5333 — 36.5112.5113 5153 5222 S223
—2165112511351235133 5393 + 3605112, 511351235133 9222 5233
+7251125113 579352235233 — 216.5112.5113.S 255222 9333 + 3651125113 1225133 S223 5233
—1085112511351225133 5922 S333 — 21651125113 51225123 S35
+3605112.51135122. 512352239333 — 3651125113 5729 52339333 + 72511257 13,5523 5233
—144511557135922 5535+ 7251125135922, 5223 333 + 162571 5 S 1335523
— 1445715 5733 5222 5233 — 2165719 51235133 9223 5233+ 144575 512351335222 S333
+ 144557155793 S35 — 725719 572352239333+ 725712 512251335533
—3657125122.5133.52235333 — 7251125122 5123.5233.S333 + 1857155729 5333
+72571951135923 5333 — 1445719 51135393 5333 + 7251951135222 5233 5333
— 4853155553+ 725755923 5233 S333 — 2457195220555 — 245111 7335525
+1445111 812357539222 9923 — 7251115793, 5133 5993 — 2165111 S93. 51335922 5933
+ 7251115793 5223.5233 + 1205111 5793 5222 S333 — 1445111 512257339503
+725111 512257335222, 5233+ 3605111 S122 512351335223 S233
— 725111 5122.512351335222 S333 — 725111 5122 5793 5533 — 2165111 512257935223 S333
— 14455111 579951335333 + 725111 57255133 5223 S333 + 1445111 5795 5123 5233 S333
— 2451115799333+ 725111 51135133 5553 — 1085111 51135133 52225223 5233
+36511151135133 53225333 — 725111 511351235523 S233 + 1445111 5113 51235922 S35
—T725111511351235922.5223 5333 — 365111 5113 51225293 5333 + 725111 511351225323 5333
—36511151135122.5222.5233 5333 — 365111 51125133 5593 5233 + 725111 51125133 92229333
—36511151125133.5222.5223.5333 — 7251115112.5123.5923 S35 + 1445111 51125123 S35 5333
—T725111511251235222.5233 S333 + 7251151125122 S535 — 1085111 511251225223 5233 S333
+36511151125122S222S§33 + 185%11522235333 - 245%1153235333
— 2455711 52229955+ 365711 S222.52239233.S333 — 6.5T11 53205353
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The algebraic discriminant Dj, just like any other SL(3)-invariant function of S, is a
function of Iy and I:

Daj3 = 3213 + 31 (3.31)

When expanded, discriminant Dgj3 contains 2040 monomials. See the appendix of the
book version of [2], where it is written explicitly for curiosity. Formula (3.31) is a remark-
ably concise expression of this disriminant through a pair of invariants, given by beautiful
diagrams figure 12 and figure 13. It is interesting to extend this type of formulas —
egs. (3.12), (3.14), (3.25) and (3.31) — to higher n and r.

Integral discriminant. Similarly, the integral discriminant is a function of Iy, Ig:
Jaj3 = F(I4, I)

where the function F' is to be determined. The homogeneity condition does not allow to
find F' unambigously, it constrains only the overall scaling factor, but not the non-trivial
dependence on the ratio of invariants:

F(li,Ie) =1, @ I (3.32)
4,16 1—210) .

To find the function G(z) in this ansatz, we need to use the Ward identities (3.7).

Ward identities. Applied to the present case of n = 3,7 = 3, the system (3.7) takes
the form

0?2 0?2 0?2 0?2
- Tz = 0 - Jaz = 0
<3830058102 0520105201 ) 313 (3830038120 0521005210 > 313

0?2 92 92
(o~ Tomeim) =0 o) =
0530005111 0520105210 0530005111 3821038201
0?2 2 92
(Gom ~ Tomeims) =0 >J
0530005003 0520105102 0530005030 6521063120
0?2 2 92
< - ) J33 =0 ( > J33 =
0530005012 0520105111 0530005021 5821058111
0?2 92 92
< - > J33 =0 ( ) J33 =
0530005012 0521005102 0530005021 5820158120
where s-parameters and S-parameters are related by
5300 = S111, s210 = 35112, s201 = 35113, 5030 = 5222, 5120 = 35122,
S021 = 35223 5003 = 5333, 5102 = 35133, 5012 = 35233, s111 = 65123

Particular equations in this system are, of course, not SL(3) invariant.
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Figure 14. Invariant differential operator O, for the case 3|3, represented as a diagram of tensor

5

contraction. Black 3-valent vertices represent tensor .S, white 3-valent vertices represent tensor e,
black 3-valent rhombuses represent tensor 9/9.S, white 3-valent rhombuses represent tensor e..

Invariant form of Ward identities. To rewrite the above differential equations in
SL(3)-invariant form, we use again the method of invariant differential operators — sum the
Ward operators with appropriate S-dependent coefficients to form an invariant operator Oy,
given by the diagram at figure 14. The antisymmetrized combination of two derivatives (two
black rhombuses) which is a part of this diagram, ensures that O, is a linear combination
of Ward operators and annihilates J33. Operator O, contains 4 horizontal lines in the
inner circle and belongs to an infinite family of operators with 2p horizontal lines in the
inner circle:
Oz, p=1,2,3,...

of which the simplest are Og and O, given by diagrams at figure 15. However, operators
Op and Oy are too simple: in fact, they do not constrain J3)3 at all. Thus O, is the main
operator we use in this section.

The action of O, on invariants and their products is given by

14 _le
04 _
Is LY
3 4146
1 472 770
| B gle——5 1 ——g1ils
O4 =
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e A

Figure 15. Invariant differential operators Op and O for the case 3|3, represented as diagrams
of tensor contraction. Black 3-valent vertices represent tensor S, white 3-valent vertices represent
tensor €, black 3-valent thombuses represent tensor 9/0.5, white 3-valent rhombuses represent tensor
€x. These operators cannot be used to find Js3, because they do not give any non-trivial equation
on it.

Applying (3.27), we obtain

140 8F 98 oOF
=2 Sy g
4314 3 Y001

O*F 112 O*F 128 , O*F
I? — —I Sty 1) p— - 21,12 ) ——
(6 6 4> o1z ~ 3 "'5gL01, +< 3 fi— 24l 6) BIE

For the integral discriminant, this expression vanishes. Substituting the ansatz (3.32) and

OuF(I4, 1) =

making the necessary algebraic transformations, we obtain a differential equation on the
function G(z):

92G(2) 9G(2)

2
(144z* + 1536z) 9.2 + (2162 + 768) ER +5G(z) = (3.33)
which is nothing but Gauss hypergeometric equation
0?G(t) OG(t)
1= t) =5 + (e = (a+ b+ 1)) == — abG(t) = 0

witha =1/12,b=5/12, ¢ = 1/2 and t = —3/32z. This is the invariant form of n = 3,7 = 3
Ward identities.

Solution. In terms of the Gauss hypergeometric function, the integral discrimi-

nant equals

I 157 1] 32 ” 7 1] [3] 32
Taa(8) = er s 2FI<[EE}H BT A A N STl R Pl R

(3.34)
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where ¢ 2 are the two constants, parametrising the general solution of Ward identities.

M —1/4 L 57 [1] 3K
T3 () = L By <[12’ 12] ’ M ' 3213

and J2(9) —161_7/42F1<|:7 11} [3] 316>

Particular solutions

12712 2|7 3213

are associated with different integration contours and can be called the first and the second
branches of J33. One can see, that the results of this section are parallel to those of section
3.2 — even the rational parameters in the hypergeometric function are the same.

Singularities. Notice, that the point ¢ = 1 corresponds to

313

=1
32]3

which is just the discriminant’s vanishing locus 3213 + 312 = D33 = 0. To investigate the
two other suspicious points ¢ = 0 and ¢ = oo, let us study asymptotics at these points.
Using (3.18), we find

J::(’.|13) (S) ~ 14_1/4 + O(t)7 when t — 0
J::(’.|23) (S) ~ 1614_7/4 + O(t)7 when t — 0

Using (3.19), we find

(1) ~ _F(1/2) 1—1/41 1 3[62 0 h 1
Tyjs (5) D(1/12)0(5/12) og (1+ 3213) +0(%), when t =
@) -I'(3/2) 7/4 313 0
a5 (S) T (7/12) 0 (1L/12) IeI, """ log (1 + 3213) +0(t), when t — 1
Using (3.18) and (3.20), we find
g (S) ~ F(1/2)P(1_/3) 3 e Y6 4 O(t_5/12) when ¢t — oo
33 I'(5/12)2  \ 32 6 ’
—7/12
(2) - I(1/3)r'(3/2) 3 e —11/12 L
J3|3 (S) —F(11/12)2 39 6 |+ O(t ), when ¢t — oo

We can see from these results, that singularities of the integral discriminant J33 at finite
values of Iy, I are completely controlled by the algebraic discriminant Dsj3. The singular-
ity at discriminant locus is logarithmic. Other singularities, not related to the algebraic
discriminant, are situated at infinite values of invariants: Iy — oo (¢ — 0) and I — —o0
(t — o00).

Hypergeometric integral. Using eq. (3.21) once again, we obtain

1 1
§T12(1 — g)=11/12 s112(1 — 5)=5/12
J3|3 =cC1- /ds + colg - /ds (3.35)
0 0

3213 + 3sI2)1/12 (3213 + 3312)7/12
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r | Invariants | Discriminant D,,|,| Integral discriminant .J,,,.
2 I I 2
213 I I ;e
_ < 1 (1/12);(5/12); [(6I3\"
204| Io I I3 — 612 ) P R S e LA AR ]
nh 2O T A T\ n | |
oo L o ) g J
2|5 In, Is, I o6 |y, $ L 31005(1/10)042 (1/10); <16£S) (128?2)
i5=o il (2/5)i+2;(3/5)i+2; I3 313
302 I I ?
_ > 1 (1/12):(5/12); 315 \*
313 Iu,I 3213 + 312 s = -
e ERE 4 ;0 il (1/2): 3213

Table 2. Several first integral discriminants in the form of hypergeometric series.

Just as in the case of Jy, it is possible to make the transformation (3.24), which gives
_ 1 17 [1] 312
T(S) = (Dgs) 2 0F (| =, = | = 6
33 (5) = (Daps) U\ [12712] 7 |2] ' 32Dy5

@) ren —7/12 77 3 312
a3 (S) = Is (D33) o Fy ([E’ E] ) [5 32D

We conclude, that cases 2|4 and 3|3 literally correspond one to another. From the point

of view of discriminant theory, this is a remarkable correspondence: discriminant Dy, is
a simple two-dimensional discriminant, which is well-known and studied, while D33 is a
three-dimensional discriminant, much more complicated and less widely known. The study
of integral discriminants reveals a parallel between these two cases.

4 Conclusion

In this paper we have described the first steps into the study of non-Gaussian averages
Jn‘T(S) = /dml ... dz, e 3@1mn) — function of invariants of S

which are functions only of SL(n) invariants of S, because of inherent SL(n) symmetry.

The real motivation of this study is generalisation of the well-known Gaussian formula
1
Vdet S

to non-quadratic forms S. If found, such generalisation may immediately have a wide range

Jn\Z(S) = /d$1 e dxy e SiiTiTi —

of applications in statistical physics and quantum field theory. We have worked out several
low-dimensional cases and present the results in the table 2, using a conventional notation

(a)r = %

As one can see, these series posess a nice structure: they are all hypergeometric, i.e, their

=ala+1)---(a+k—1)

coefficients are ratios of I'-functions. Despite there are too few examples to make far-going
conclusions, we conjecture that

Jn‘,,(S) = /dxl o dxy, e S@ELTn) = hypergeometric function of invariants of S
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To support this conjecture, it is necessary at least to calculate a few more examples.
As follows from the table 1, the next simplest examples would be Jyg, Js4 and Jy3.
Also, because of hypergeometric nature of integral discriminants, it is interesting to find
their g-deformation, as well as the CFT representations of these objects, in the spirit
of [13]. Especially interesting is the interplay between non-trivial g-deformation and action-
independence of integral discriminants. Of course, most interesting would be generalization
of our results to functional integrals, some independent attempts in this direction have
already been made [14].
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